Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna
نویسندگان
چکیده
1 The relative roles of climate and management for driving changes in woody cover in savannas over the past century are the subject of active debate. Perspectives arising from short-term, small-scale, local experiments are rarely tested over larger scales and longer time frames. 2 Regression analysis and aerial photography were used to assess the relative importance of land-use history (fire and grazing), rainfall and initial woody cover (woody cover at the beginning of a sample period relative to the range of woody cover expressed within a land type) in accounting for rates of change in overstorey and understorey cover between the 1940s and 1990s in central Queensland, Australia. Analyses included 279 site-period combinations representing five semi-arid eucalypt savanna land-types within a 125 755 km 2 region. 3 Fire and grazing variables provided no explanatory power. In general, relative rainfall (rainfall for a given period standardized against mean annual rainfall) was positively related and initial woody cover negatively related to rates of change in both the overstorey and the understorey. The interaction between rainfall and initial woody cover was significant, reflecting the fact that increases in cover coincided with low initial cover when rainfall is higher than average, whereas decreases in cover typically occurred with high initial cover, regardless of rainfall. 4 On average, overstorey and understorey cover increased over the second half of the 20th century. This pattern is consistent with the first half of the 20th century having more intense droughts and being drier overall than the relatively wet second half. 5 The findings highlight the primary importance of interactions between rainfall fluctuations and density dependence as determinants of large-scale, long-term woody plant cover dynamics in savannas subject to large rainfall excess and deficit over multiyear time-scales.
منابع مشابه
Assessing Long-Term Trends In Vegetation Productivity Change Over the Bani River Basin in Mali (West Africa)
Using time series of Normalized Difference Vegetation Index (NDVI) and rainfall data, we investigated historical vegetation productivity trends from 1982 to 2011 over the Bani River Basin in Mali. Statistical agreements between long-term trends in vegetation productivty, corresponding rainfall and rate of land cover change from Landsat time-series imagery was used to discern climate versus huma...
متن کاملRemote sensing for urban heat and cool islands evaluation in semi-arid areas
Cities are experiencing rapid population growth and consequently extensive urbanization. Land-use/land-cover change is one of the important elements worldwide, which significantly affect the environment. This study aims to describe the emergence of urban heat and cool islands as a result of changes in land-use/land-cover. Land surface temperature over a 32-year period in Isfahan city, Iran was ...
متن کاملEstimating vegetation structural effects on carbon uptake using satellite data fusion and inverse modeling
Regional analyses of biogeochemical processes can benefit significantly from observational information on land cover, vegetation structure (e.g., leaf area index), and biophysical properties such as fractional PAR absorption. Few remote sensing efforts have provided a suite of plant attributes needed to link vegetation structure to ecosystem function at high spatial resolution. In arid and semi...
متن کاملEvaluation of land degradation trend using satellite imagery and climatic data (Case study: Fars province)
Introduction: Climate change and human activities have a direct impact on land vegetation. Decreased rainfall and increased temperature are among the climate change factors leading to significant changes in water resources and energy balance in affected areas. On the other hand, human activities such as growing population, overgrazing and land use changes that make change in land conditions, al...
متن کاملVegetation Dynamics in the Upper Guinean Forest Region of West Africa from 2001 to 2015
The Upper Guinea Forest (UGF) region of West Africa is one of the most climatically marginal and human-impacted tropical forest regions in the world. Research on the patterns and drivers of vegetation change is critical for developing strategies to sustain ecosystem services in the region and to understand how climate and land use change will affect other tropical forests around the globe. We c...
متن کامل